Optimum use of Processing Additives in Rubber compounds — Basic principles and applications

Dr. J. Bertrand
VKRT meeting of 7th December 2006 in Bilthoven, NL
Optimum use of Processing Additives

Agenda

Basic principles dominating the function of Processing Additives

- Interactions of Compound components
- Physico-chemical principles
- Specific and combined effects

Applications

- Product classes
- Point of additive addition

Conclusion
Optimum use of Processing Additives

Basic principles dominating the function of Processing Additives

Interaction of Compound components

Influenced by:
- Strength of interaction (enthalpy driven):
 - Van-der-Waals forces
 - Hydrogen bonding
 - Polar forces
 - Ionic forces
 - Covalent bonding (-> network)
 - Steric hindrance

Possibilities to arrange (entropy driven):
- Molecular mass
- Number of permutations

Affect:
- Glass transition
- Modulus
- Tear Strength
- Elongation
- Resilience
- Abrasion
- Viscosity
- Processability
- Polymer blending

Polymer – Polymer Interaction
Basic principles dominating the function of Processing Additives

Interaction of Compound components

Influenced by:
Strength of interaction (enthalpy driven):
- Van-der-Waals forces
- Polar forces
- Ionic forces
- Covalent bonding forces
- Steric hindrance

Possibilities to arrange (entropy driven):
- Molecular mass
- Number of permutations

Affect: Reinforcement, Modulus, Tear Strength, Elongation, Hardness, Resilience
- Abrasion, Viscosity, Heat built-up, Processability, Filler incorporation etc.
Optimum use of Processing Additives

Basic principles dominating the function of Processing Additives

Interaction of Compound components

Influenced by:
- Strength of interaction (enthalpy driven):
 - Van-der-Waals forces
 - Hydrogen bonding
 - Polar forces
 - Surface structure

Possibilities to arrange (entropy driven):
- Particle size

Filler – Filler Interaction

Affect: Modulus, Tear Strength, Elongation, Abrasion, Viscosity, Resilience, Hardness, Heat Built-up, Processability, Filler incorporation / dispersion etc.
Optimum use of Processing Additives

Basic principles dominating the function of Processing Additives

Interaction of Compound to Equipment

Influenced by:
Strength of interaction (enthalpy driven):
- Van-der-Waals forces
- Polar forces
- Ionic forces
- Covalent bonding forces

Compound – Metal Interaction

Affect:
- Mill / calander tack
- Extrusion Flow Rates
- Mould Release
- Mould fouling
- Building tack
- Rubber-to-Metal adhesion
Basic principles dominating the function of Processing Additives

Solubility parameter concept: Hildebrand parameters (SI)
Optimum use of Processing Additives

Basic principles dominating the function of Processing Additives

Specific effects

Micell formation of Metal soaps, e.g.:
- Ultra-Flow 500
- Ultra-Flow 800

Shear forces

Retarder, e.g.:
- Ultra-Flow ZEH for PUR
- Ultra-Gard IMR for ECO
Basic principles dominating the function of Processing Additives

Combined effects: Tackifier

A good tackifier:

- Needs a good to excellent solubility / compatibility to both adhesion partners
- Must have a minimum Molecular weight to built-up enough bonds to bridge the two partners (about 500 gr/mol)
- Must be dosed higher than the solubility threshold to migrate to the surface
- Works best 10K above its softening temperature, gets brittle below, at higher temperature the intermolecular forces get overruled by thermal movement
- Aromatic groups in tackifiers build forces to aromatics, filler surfaces and metal elements -> most widely used (C9, Phenolic resins, Xylene, Coumarone/Indene etc.)
Basic principles dominating the function of Processing Additives

Basic need: Distribution of the additive

A good distribution of an additive can be achieved, if:

- it melts down at temperatures below the processing temperature
- at least one major component of the additive has to soften below the processing temperature (mill: max. 70°C, IM: max. 135°C)

Example:
- Sulfur or metal oxides do not melt during mixing, sulfur and metal oxide pre-dispersions in a low-melting matrix distribute the material excellently during mixing
Application of Processing Additives

Peptizer / Mastication systems: Reduction of molecular weight of Natural Rubber

Chemical peptizer, eg.: Ultra-Pep 96, Ultra-Pep 148

- Viscosity reduction of NR in peptisation step
- Quick reduction of viscosity and nerve by cleavage of polymer main chain
- Improvement of blending and processing properties of NR by lower viscosity
- Booster component adheres to fillers, therefore incorporation into NR mandatory before filler addition
Optimum use of Processing Additives

Application of Processing Additives

Homogenizer: Increase of Friction, levelling the compatibility of polymers

eg.:
Ultra-Blend 4000 (black), Ultra-Blend 6000 (light coloured),
Ultra-Blend 5500 (blend of homogenizer and lubricant)

- Enhanced polymer blending
- Higher mixing efficiency (lower energy consumption at equal homogeneity)
- Lower scrap rates
- Higher storage stability
- Better dimension stability of uncured products
Optimum use of Processing Additives

Application of Processing Additives

Homogenizer: Increase of Friction, levelling the compatibility of polymers

example: Ultra-Blend 5500 in NR/BR blend

NR/BR blend without additive: NR/BR blend with 4 phr UB 5500:
Internal Lubricants: Lowering polymer – polymer and polymer – filler interactions

e.g.: Ultra-Flow 500, 600 -> NR, CB compounds
Ultra-Flow 440, 700S, 800 -> NR, CB and silica compounds
Ultra-Lube 200, 220 -> general filler dispersants and lubricants
Ultra-Lube 420: EPDM

- Lower compound viscosity
- Better filler incorporation
- Higher mixing efficiency (lower energy consumption at equal filler dispersion)
- Higher extrusion flow rates
- Lower viscosity rise upon storage
- Quicker compound relaxation behind extrusion die, better control over part dimensions
Optimum use of Processing Additives

Application of Processing Additives

External Lubricants: Lowering compound – equipment interactions

eg.: Ultra-Lube 160 -> general purpose
 Ultra-Lube IMX -> highly effective, polar polymers (ECO, ACM, AEM, HNBR, NBR, CSM etc.)
 Ultra-Lube 220, 420 -> SBR, EPDM
 Ultra-Lube 790 -> FPM

- Compound viscosity less affected
- Less adhesion to mill, calander or mixer
- Excellent extrusion flow rates
- Excellent mould release
- Reduced mould fouling
Application of Processing Additives

Plasticiser: Lowering polymer – polymer and polymer – filler interactions

eg.:

A) Ultra-Flex 750, 950 -> NBR, HNBR, ECO etc.
 - Low temperature flexibility in high Tg polymers
 - Low volatility at temperatures of use

B) Ultra-Blend 3000 / DL -> non-migrating plastiziser for NBR
 - not oil-extractable
 - non-volatile

C) Ultra-Flex AS -> brings antistatic properties
 - Ultra-Flex AS: antistatic properties for rollers, flooring, cods etc.
Optimum use of Processing Additives

Application of Processing Additives

Tackifier resins: migrating, surface active, increase adhesion forces

eg.: Ultra-Blend 3000 -> Xylene resin blend, Sp.: 20 °C
 Ultra-Blend 1000 -> Pelletized colophony, Sp.: 80 °C
 Ultra-Blend 5000 -> Aromatic hydrocarbon resin blend, Sp.: 90-100 °C
 Ultra-Blend 2000 -> Phenolic resin blend, Sp.: 135°C

- Migration velocity is steered by solubility and molecular weight
- The higher the MW, the slower the migration
- Low Softening point: high short term tack, low long term tack
- High Softening point: low short term tack, high long term tack
Application of Processing Additives

Pre-Dispersions:

eg.: Ultra-Sulph 950, 1050, 1090, 1200, 1350 -> Sulfur pre-dispersions
 Ultra-Mag 9000, 9020 -> Magnesium oxide pre-dispersions
 Ultra-Zinc 7000 -> Zinc oxide pre-dispersions

- Low-melting matrix carries the non-melting product into the compound
- Matrix prevents reagglomeration of product
- Pre-dispersions ensure excellent dispersion in critical compounds, eg. soft roller compounds
- The full potential of more active Metal oxides is tapped
Optimum use of Processing Additives

Application of Processing Additives

Point of additive addition:

Mastication step: Conventional chemical peptizer

First masterbatch:

Together with Polymers: Modern peptizer, Homogenizer, Internal lubricants
Together with Fillers: Filler dispersants, Plastiziser

Last mixing step: External lubricants, Tackifier
Optimum use of Processing Additives

Application of Processing Additives

Conclusion:

- Processing Additives are no magic but work based on scientific knowledge
- Processing Additives allow to process critical compounds
- Processing Additives increase process efficiency
- Processing Additives help to manage the counteracting requirements of compound performance and compound processing
- Solve your compound requirements by the choice of rubber, filler, curing system; solve your processing requirements by processing additives!
Optimum use of Processing Additives

Behn Meyer Europe GmbH

BeNeLux:

Fr. Brigitte van der Geer-Braudorn
Klaprozenweg 75-K
NL 1033 NN Amsterdam

Phone: +31 20 492 3485
Fax: +31 20 492 3486
Mobile: +31 622 56 20 57

Email: bvdgeer@behnmeyer.com
www.behnmeyer.com